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Abstract-In this paper. we give E. Noether's symmetrical theorem in Kadic and Edelen's gauge
theory of defect continuum and from this theorem obtain easily the field equations of ddi.-ct
continuum. The conservation law under the space translation group is applied to the study of the
fracture of materials.

INTRODUCTION

The subsequent devdopment of defect theory can be divided roughly into three periods.
The third period covers the years after 1978. In this period. the theory was developed for
gauge theory of defects which contains two parts, namely the Lagrangian and geometrical
theory.

In thc Lagrangian gauge theory of defects, the earliest paper was published by Fa
(1978). Later, there were papers published independently by Fa (1981), Golebiewska­
Lasota (1l)79) and Kadic and Edelen (1983). Among them. there were some works on
transformations of the field eljuations and characteristic quantities of dislocation which
made them invariant. In the gauge theory of defect continuum, the symmetrical theorem
and the conservation laws have not been discussed. In particular, their application to
studying fracture of materials is not found.

In this paper, we give Noether's symmetrical theorem and the conservation laws on a
gauge theory of defect continuum. The conservation law under the space translation group
is applied to studying fracture of materials. A nt.:w conservation integral may be considered
as an extension of Eshelby's energy-momentum tensor to a more general case.

PREPARED KNOWLEDGE (KADIC AND EDELEN. [lJK3)

Let .1''' «(I = I. 2, 3, 4) be the global coordinates of the reference configuration and .1'4 = (
be time, the generalized spatial coordinates of the local coordinate system are

The generalized Cauchy strain tensors are

( I )

Therefore. L«(:u~) = L(Cu~). where L is the Lagrangian of a classical clastic field. The
Lagrangian function L(C,,~) is invariant under the global gauge group Go = SO(3)o c> T(3)O.

Let us now consider the local gauge invariance. According to the gauge theory (Abers
and Lee, 1973). we introduce the gauge potential Wand (/> such as

(2)

where A = 1.2,3.
The Lagrangian function of defect continuum can be written as
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where

(4)

and

(5)

in which

I~. ((" = O. for (/ # h

and

SI and S~ arc coupled constants. C,/I arc tht: componcnts l)f the Cartan Killing metric of
the suogroup SO(3). L 1 and L~ an: the Lagrangian functions of the (/1- and W-lields.
respectively.

For the disclinatilln lidd. we have

For the dislocation field. we havl.:

(7)

Therd"ore. thl.: total I.agrangian funl.:tion of dd'l.:l:t continuulll is

(X)

whl.:re y" arl.: refcrencl.: I.:oordinatl.:s. and x' . .r:,. arc tielllljuantitil.:s, Thl.: total Lagrangian
I'ul1l.:t ion is invariant undl.:r thl.: group (j == SU(3) [> T(3). Then:ltlrl.:. the action funl.:tional
follows as

(l) )

which is invariant untler thl.: loed group (i = SO(3):> T(3).

TilE SYM:\IETRICAL TIlEORE\1

In this Sel.:tioll. WI.: givl.: Noether's symml.:trical theorem of ddcl.:l continuum,
We considl.:r a continuous transformation group with onl.: single parameter

{

',1,-''' = \'" + f",,+O';(tl~)

c; x'Y = x' +9'II+O:(tl~)

11',;' = ~V~+P':'I+O;(,/:)

(/I:,' = (P.: + q,:'/ + OXalll:)

whl.:rl.: 1/ is a parametl.:r. ;( = 1.2.3; (/ = 1.2.3.4 and the quantities

( I ())
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(I \)

It is obvious that we can obtain some kind of transformation group by assigning r.
g'. p~ and q~ some special values.

We give Noether's symmetrical theorem as follows (Konopleva and Popov. 1981).
If the action functional S has intinitesimal invariance under the local gauge group G.

there exists

( 12)

where

and

1
M.I/lx' = a.ji'x' - (11[/I'X~,)"

M.!i> w,: = a.!I' w,: - (I' L/I' W~,.)"
• I .~ I .... I -:' :1 I'" "T

c)Lie)ep" = e'Lie ep,,- (I L//'c/l".I') "

(13)

( 14)

( 15)

['root: I I' the al:tion runl:tiLlnal S has inlinitesim.L1 invarianl:e under the 10l:al gauge
group Cl. we have

f L( .\'" + L1y". x' +L1x' •.\.~, + L1x~" W,: + L1 H',:. W,:." +L1 W,:.". (/),: + L1(P,:. (P,:." +L1(P,:,.) d V'

=i L(y".x'.x:. W,:. W~.".c/»p,:h)d/·.

Since the transrormation or the volume clement is

d/" = [I + (L1y") ,,] dV

and

According to the infinitesimal invariance or the action functional we obtain
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or

L. fo<. Dus(; el uf.

Finally. we have

Noether's symmetrical theorem plays an important role in modern field thcory. From it
we can ootain the field equations of defect continuum. the conservation laws and the
dynamical criterion of a singularity (dislocations or crack. etc.) motion.

Ohviously. from Noether's symmetricalthenrelll. the ficld equations descrihing defect
continuum arc given oy

( 16)

(1/. (i''L)
- =()l.x :1:t •

1 </)" 1 4)"./, .1>

In fact. the field equations. eqns (16). arc the result of the symmetrical theorem. This
method is dilferent from Kadic and Edelen's theory.

r\l'l'LICA1'10:" TO I'RAC1'lIR E

It is well known that Eshelby (1956) first gave a formula for the force acting on a
general elastic singularity (Liehowit/e. I96X) which is called the energy-momentum tensor.
The i-integral of Rice (I96H) is equal to the 2-D form of it. Now. we may extend it to a
generalized case. a defect continuum. gauge theory of defects.

In order to give the applil:ation to fracture. we discuss the conservation law under the
space translation group. We ddine

.1"" = .1'" + C"i: ( 17)

as a spatial translation group, in whidl C is a constant vector and I: an infinitesimal quantity.
Therefore

I 4 = o. I' == C'. q' = fI,~ = q,~ = o. ( 18)

Substituting the above into Noethcr's symmetrical theorem. eqn ( 12). when x. Wand
IP arc extremals. the conservation law under this group. can he given as
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Fig. I. The dosed surface surrounding the crack tip.

(
. (1L cL CL) c (CL cL CL)--- ., - _.- V' - --' - - -' -- W' -'LJ"k. 1.' .\.k. 1"" r I>.k 1./.,7 rPl>.k. - 1 l' X.k. + 1 r~" I>.k. + 'A,' rPl>.k. .

( .'." ( •• 1>." ( '/'1>." ." (t (X (. I> C,/,I>

Integrating eqn (19). we obtain
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( 19)

The righi-hand side of Ihe equation is the energy release rate or the force acting on the
singularity (dislocation, crack, etc.). Here we mainly aim at the crack propagation force. it
can be expressed by the left-hand sidc of the equation. Take a closed surface surrounding
the tip in Fig. I. [t consists of tlv.: free surface of the crack tip 7t". and a smooth surface 7t.

The total driving force acting on the crack tip is

(10)

Bec;lUse the surface of the crack is free, the total driving force acting on the crack can
be expressed by an integral as

(11 )

Therefore. we obtain a dynamical criterion of crack propagation in the defect continuum.
Let the critical driving or energy release rate of a crack in the existence of dislocations and
disclinations be F... When

the crack starts to propagate. f~, is a material constant. Fk can also be written as

(11)

Because no limitation is given to the particular form of L()(B~). the above conclusion
has a generalized significance.

[n the case of defect free materials Fk is simplified as
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(23)

It is easy to prove that F, is a conservational integral. It can be rewritten as

(24)

Compared with Eshdby \ energv-momentum tensor (Konopleva and Popov. 198 J :

Rice. 1968) for the motion of elastic singularity

(25)

Fk is an integral over tht.: curved surl~lCe of a crack which expresses tht.: force acting on the
surt~tct.: L in tht.: direction ofl.

Let y' = .Y• .I" = y . .1" = ::. projecting F~ onto the .\' ..1' plane. we havt.:

T, = fT",II" is thl.: driving forcl.: on r. It is till.: samt.: as Ricl.:'s J-intl.:gral. thl.: extl.:nsion force
acting on a crack tip. Thl.:rt.:fo('(:. thl.: F-intl.:gral givl.:n in Fa ( 19X I) and Golchil.:wska - Lasota
and Etklcn ( 1(79) is thl.: gl.:neraliza tion ofthl.: dastic J-intl.:gral in thl.: I.:xistem:e ofdislocations
and disdinations. and thl.: critl.:rion of fral.:lurl.: giwn in this papl.:r is thl.: gl.:nl.:falil.ation of
lhl.: crill.:rion of fractu1'1.: on ddi.:ct 1'1'1.:1.: matnials.

DISCUSSIO N

Physical and ml.:chanical rl.:seardll.:rs haw heen intl.:restl.:d in treating tht.: plastic rt.:gion
ncar a crad tip and SOIl1t.: prohkrns of dynamics. From the vit.:wpoint of tht.: physical
mt.:dlanism of plastic dt.:formation. tht.: macro-plastic rl.:gion was takt.:n as tht.: continuous
distrihution of microscopic ddi.:cls. By virtul.: of thl.: lidd lht.:ory. wt.: prt.:sent the F-integral.
eqn (22).

In fat:l. thl.: gauge lield theory of dt.:fet:t continuum is a lidd theory of generalized
continuum and Noethn's tht.:orem. which various consavation laws arc derived from. plays
an important rok in 1l1Odnn lidd theory. For the static. the integral conservation laws arc
some path-independent integrals. Hl)Wever. for the dynamics. it is the same as the static.
e.g. F-integral (22) denotes the energy rdease rate or the total driving force acting on the
free surface of the t:rat:k. then:fon: tkfct:t lields correspond to providing a resistance to
cral.:k propagation.

In this papa. J-intl.:gral (10) is a spet:ial t:asl.: ofour F-integral based on the gauge theory
ofdt.:fect continuum whit:h is dilli.:rent from BCS and Yokobory's theory. In partit:ular. the
maao-tx:haviours of meehanies and thl.: miero-meehanism of physics arc connected by the
gauge thl.:ory of dt.:fl.:t:ts .
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